Biological consequences of dosage dependent gene regulatory systems
نویسندگان
چکیده
منابع مشابه
Regulatory consequences of gene translocation in bacteria
Gene translocations play an important role in the plasticity and evolution of bacterial genomes. In this study, we investigated the impact on gene regulation of three genome organizational features that can be altered by translocations: (i) chromosome position; (ii) gene orientation; and (iii) the distance between a target gene and its transcription factor gene ('target-TF distance'). Specifica...
متن کاملGene dosage-dependent secretion of yeast vacuolar carboxypeptidase Y
The structural gene for yeast vacuolar carboxypeptidase Y (PRC1) has been cloned by complementation of the prc1-1 mutation. As much as an eightfold elevation in the level of carboxypeptidase Y (CPY) results when a multiple-copy plasmid containing the PRC1 gene is introduced into yeast. Unlike the situation with a single copy of PRC1 in which newly synthesized CPY is efficiently localized to the...
متن کاملEvaluation of chemical and biological consequences of soil sterilization methods
Sterilized soils are commonly used for the study of xenobiotic sorption and as an abiotic control in biodegradation experiments. They are also used for the chemical study of nitrogen and carbon cycle processes and the elimination of the biological factors. In this research the effects of different soil sterilization methods such as autoclaving, fumigating and exposure to ultraviolet and microwa...
متن کاملCOX-2 gene dosage-dependent defects in kidney development.
Deletion of cyclooxygenase (COX)-2 causes impairment of kidney development, including hypothrophic glomeruli and cortical thinning. A critical role for COX-2 is seen 4-8 days postnatally. The present study was aimed at answering whether different COX-2 gene dosage and partial pharmacological COX-2 inhibition impairs kidney development. We studied kidney development in COX-2(+/+), COX-2(+/-), an...
متن کاملMicroRNAs and gene regulatory networks: managing the impact of noise in biological systems.
Biological systems are continuously challenged by an environment that is variable. Yet, a key feature of developmental and physiological processes is their remarkable stability. This review considers how microRNAs contribute to gene regulatory networks that confer robustness.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression
سال: 2007
ISSN: 0167-4781
DOI: 10.1016/j.bbaexp.2006.12.002